### **ASTR 340: Origin of the Universe**

Prof. Benedikt Diemer

#### Lecture 12 • The Expanding Universe

10/07/2021

### Messier catalog discussion

### Compact, round cluster

- Circle shaped + yellow/white/blue
- Pediodt!
- Bright center dot
- Circle worlds
- Fuzzballs





#### Scattered stars

- Paint splatter
- Sprinkles
- Cluster worlds
- Less / mildly / super dense
- Blue dots







#### Gas clouds

- Starry mist
- Cloudy Wowdies
- Space clouds
- Dispersed cloud objects
- Explosions







### Strong colors

- RED >:)
- Vibrant colors
- Red / yellow / blue





### Spirals

- Swirly Wirlies
- Spiral glowing lights





### Ellipsoids

- Frisbee Wisbees
- Oval worlds
- Disks



### Elongated

- Lines
- Line-like disks







#### Weirdos

Looks exploded



#### Modern, scientific categories

- Globular cluster (round, compact star cluster)
- Open cluster (less compact cluster of stars)
- Gas cloud (diffuse nebula)
- Planetary nebula (gas cloud around single star)
- Supernova remnant (leftovers of stellar explosion)
- Double star (two stars that happen to appear close)
- Galaxy (the only objects not in MW)

In the Milky Way

## Globular clusters (29)



## **Open clusters (26)**



# Gas clouds (7)



Lefty's Astrophotography

# Planetary nebulae (4)



## Supernova remnant (1)



## Double star (1)



## Galaxies (40)













#### Part 0: Recap

### **Participation: Recap #1**



#### **TurningPoint:** What is special about Cepheid variable stars?

Session ID: diemer



## The first standard candle: Cepheid Variables



- In 1912, Henrietta Swan Leavitt observed a type of variable star called Cepheids
- Instrinsic luminosity can then be obtained from apparent brightness and **parallax distance**
- She discovered that Cepheids' total luminosity is related to the **period of fluctuations**
- Cepheids can be used as **standard candles!**



Image: hyperphysics.phy-astr.gsu.edu

### **Participation: Recap #2**



#### **TurningPoint:** What causes cosmological redshift?

Session ID: diemer



## **Cosmological Redshift**

- Defined as the **relative shift in wavelength** between the emitted and observed light
- The "redshift" can be...
  - z > 0: redder, longer wavelength
  - z < 0: bluer, shorter wavelength
- Approximation z ≈ v/c can be used at low redshift and small velocities (v << c)</li>





### **Participation: Recap #3**



#### **TurningPoint:** What does the Hubble-Lemaitre law say?

Session ID: diemer



### **Hubble-Lemaitre law**



## **Cosmological redshift**



#### Redshift is caused by the expansion of space!

Arny's explorations

## Today

- Redshift and the Size of the Universe
- The Age of the Universe (a guess)
- The Geometry of the Universe

#### Part 1: Redshift and the Size of the Universe

## Metric for expanding space

• Recall spacetime interval in flat space:

$$\Delta s_{\text{static}} = \sqrt{(c\Delta t)^2 - (\Delta x^2 + \Delta y^2 + \Delta z^2)}$$

• Keep time the same, let space expand:

$$\Delta s_{\text{expanding}} = \sqrt{(c\Delta t)^2 - a^2(t) (\Delta x^2 + \Delta y^2 + \Delta z^2)}$$

- Called the (flat) Friedmann-Lemaitre-Robertson-Walker, or FLRW metric
- a(t) is the time-varying scale factor
- Scale factor is **unitless!**



## Metric for expanding space





$$\Delta s_{\text{expanding}} = \sqrt{(c\Delta t)^2 - a^2(t) (\Delta x^2 + \Delta y^2 + \Delta z^2)}$$

## Expanding space









## **Connecting redshift and scale factor**



- Redshift is not due to velocity of galaxies
  - Galaxies are approximately stationary in space
  - Galaxies get further apart because the **space** between them is **physically expanding**
- Cosmological redshift is due to cosmological expansion of wavelength of light, not the regular Doppler shift from local motions

### **Connecting redshift and scale factor**



Define scale of Universe today: Define a relative to today:  $R_{obs} = R_0 = R(t_0) = R(today)$  $a(t) = R(t)/R(t_0)$ 



## **Connecting redshift and scale factor**



## Participation: Redshift-scale factor relation #1



**TurningPoint:** What redshift does a scale factor of 0.25 correspond to?

Session ID: diemer



$$a = \frac{1}{1+z}$$



## Participation: Redshift-scale factor relation #2



**TurningPoint:** What scale factor does a redshift of 2 correspond to?

Session ID: diemer



$$a = \frac{1}{1+z}$$



### Part 2: The Age of the Universe (a guess)

## **Connection to Hubble rate**

$$z = \frac{a_{obs}}{a_{em}} - 1 = \frac{a_{obs} - a_{em}}{a_{em}} = \frac{\Delta a}{a}$$
  
For a small  $z, z \approx v/c$ :  
$$v_{Hubble} = cz = c\frac{\Delta a}{a} = c\Delta t\frac{\Delta a}{\Delta t a} = d \times H_0$$
  
This is the Hubble law if we associate  
$$H(t) = \frac{1}{a(t)}\frac{da(t)}{dt}$$

- The Hubble constant is  $H_0 = H(t_0)$ , the expansion rate today
- The Hubble rate is the **fractional rate** at which the Universe expands **per time!** 
  - e.g., H = 0.1/yr would mean 10% expansion per year
  - Like interest: a bank doesn't give you \$10 / year, but \$1 / \$100 / year = 0.01 / year

### **Participation: Hubble rate**



#### **TurningPoint:** Imagine at a = 0.5 the Universe expands to a = 0.6 in a span of one year. What is the Hubble rate?

Session ID: diemer





### How fast is the Universe expanding?





a = 1 a = 1.07

## How old is the Universe?

- Imagine a Universe that is expanding at a constant rate
- $a(t) = t \times da/dt$

 $\implies H(t) = \frac{1}{t}$ 

- With this constant expansion, the relative rate of expansion decreases
- We define the Hubble time, the time it would take to get to a certain expansion rate H if the rate is constant:

$$t_{\rm H} = \frac{1}{H(t)}$$

- What is this time today?
- If the Universe had been expanding at the same rate for its entire life, it would be about 13.8 Gyr old

 $H(t) = \frac{1}{a(t)} \frac{da(t)}{dt}$ 



$$t_{\rm H,0} = \frac{1}{H_0} \approx \frac{1}{0.07/\rm{Gyr}} \approx 13.8 \,\,\rm{Gyr}$$

## How old is the Universe?



Hawley & Holcomb

### **Participation: Hubble time**



#### **TurningPoint:**

Imagine we observe the distance to some galaxy to be 1 Mpc one year, and 1.2 Mpc the next year. How old would we think the Universe is, assuming the expansion rate is constant?

Session ID: diemer



### Part 3: The Geometry of the Universe

## **Riemann spacetimes**

- Spacetime must be locally flat for strong equivalence principle
  - This is true for Riemannian spacetimes (no powers greater than 2 in metric)
  - Basically "smooth" surfaces
- For the Universe as a whole, must be **homogeneous & isotropic** 
  - Flat (Euclidean space, Minkowski spacetime)
  - **Positively curved** (like a sphere)
  - **Negatively curved** or **hyperbolic** (like a saddle point everywhere; but no equivalent in 2D/3D)





## **Spherical coordinates**

- Spherical coordinates:
  - Radius (r)
  - Angle "up-down" (θ)
  - Angle "around" ( $\phi$ )





### Metric for curved and expanding space

$$\Delta s_{\text{FLRW,flat}} = \sqrt{(c\Delta t)^2 - a^2(t) (\Delta x^2 + \Delta y^2 + \Delta z^2)}$$

$$\implies \Delta s_{\text{FLRW,flat}} = \sqrt{(c\Delta t)^2 - a^2(t) \left[\Delta r^2 + r^2(\Delta \theta^2 + \sin^2(\theta)\Delta \phi^2)\right]}$$

$$\Delta s_{\text{FLRW,curved}} = \sqrt{(c\Delta t)^2 - a^2(t) \left[\frac{\Delta r^2}{1 - kr^2} + r^2(\Delta\theta^2 + \sin^2(\theta)\Delta\phi^2)\right]}$$

k can be 0 (flat), >0 (positively curved), <0 (negatively curved)

## **Geometry of space**



## Take-aways

- Cosmological redshift is caused by the expansion of space
- The scale factor a(t) measures the size of the Universe relative to today; it is related to redshift as a = 1 / (1 + z)
- The Hubble rate H(t) measures the relative expansion of the Universe per time
- The FLRW metric describes expanding space, which can be flat or positively/negatively curved

### Next time...

#### We'll talk about:

• Dynamics of the Universe

#### Assignments

- Post-lecture quiz (by tomorrow night)
- Homework #2 (due tonight!)

#### Reading:

• H&H Chapter 11