ASTR 340: Origin of the Universe

Prof. Benedikt Diemer

Lecture 15 • The very, very early Universe

10/26/2021

Exams & Doctor's notes

- No need to bring doctor's notes if you miss a lecture or need an extension on a quiz
- If you miss an exam, you do need to provide a doctor's note

Participation: Recap #1

TurningPoint: Which component dominates the Universe today?

Session ID: diemer

Participation: Recap #2

TurningPoint: Which component dominated the Universe at early times?

Session ID: diemer

Our Universe

 $\Omega_{m,0} \approx 0.3$ $\Omega_{\Lambda,0} \approx 0.7$ $\Omega_{k,0} \approx 0$ $H_0 \approx 70 \text{ km/s/Mpc}$

- Flat (as far as we can tell)
- Dominated by **dark energy** (since $t \approx 10$ Gyr)
- DE looks like cosmological constant
- Will undergo accelerated expansion forever (unless we're missing something)
- Hubble time is (coincidentally) quite close to true age of Universe

Understanding the Friedmann equation

 $\Omega_{m,0} \approx 0.3$ $\Omega_{\Lambda,0} \approx 0.7$ $\Omega_{k,0} \approx 0$ $H_0 \approx 70 \text{ km/s/Mpc}$

- Matter dominates in the beginning
- About 10 Gyr after the Big Bang (a ≈ 0.75, z ≈ 0.3) DE (the cosmological constant) becomes the dominant component
- DE will continue to become more dominant in the future

Early and late times

- In the **beginning**, the Universe behaves like a **flat matter-only** Universe (except for photons, which we have not included yet)
- At late times, the Universe expands exponentially if $\Lambda > 0$

Is the Universe finite or infinite?

- If the Universe is **positively curved**, it is **finite**
- If the Universe is flat or negatively curved, it is probably infinite
- However, it could theoretically have a non-simple ("multiply connected") geometry, which could be finite
- We can only test flatness, homogeneity, and isotropy within the part of the Universe that we can see

Connecting redshift and scale factor

Big questions

- As the scale factor goes to zero...
 - All matter must have been squeezed together very tightly
 - If crushed together at high enough density, galaxies, stars, etc could not have existed as we see them now
- Questions
 - How far back can we see?
 - What was the original content of the Universe?
 - What were the early conditions like?
 - What physical processes were important?
 - How did all of this result in the matter we see today?

Today

- The light-dominated Universe
- The hot Big Bang
- The very early Universe

Part 1: The light-dominated Universe

Participation: Oldest observation

TurningPoint:

How old (time since the Big Bang) is the oldest observation we have? (Universe is 13.8 Gyr old)

Session ID: diemer

History of the Universe

Dark Energy Accelerated Expansion

The Cosmic Microwave Background (CMB)

- Space is filled with a nearly uniform, faint radiation field
- Discovered in the 1960's
- Range of wavelengths, with peak in **microwave** range
- Known as Cosmic Microwave Background (CMB)
- Present density is 411 photons/cm³
- Emitted at $z \approx 1100$
- Will discuss CMB in detail next week

Evolution of radiation

- Density of matter decreases as 1/volume = 1/a³
- Density of photons decreases the same way, but photons are also redshifted
- Since photon energy is proportional to frequency:

$$E = hf = \frac{hc}{\lambda} \implies E \propto \frac{1}{a}$$

• Thus, energy density of photons compared to today ($\rho_{\rm r,0}$) goes down as $1/a^3 \times 1/a = 1/a^4$

What dominates the energy density?

University of Oregon / Pearson

Part 2: The hot Big Bang

Participation: What is temperature?

TurningPoint: What physical quantity do we describe as temperature?

Session ID: diemer

What is temperature?

- In the early Universe, photons and particles were in **thermal equilibrium**
- At a given temperature, each particle or photon has the **same average energy:**

$$\langle E \rangle = \frac{3}{2} k_{\rm B} T$$

$$k_{\rm B} = 1.38 \times 10^{-16} \frac{\rm erg}{K}$$

- k_B is called the **Boltzmann constant**

Evolution of temperature

Temperature and energy increase towards the Big Bang as 1/a

The hot Big Bang

- Lemaitre proposed Big Bang theory in 1927 ("primieval atom")
- A hot early Universe was predicted in 1948 by George Gamow (with Alpher and Herman)
 - The idea: the universe started off very hot and cools as it expands
 - They predicted "relic radiation" with temperature of about 5K (close!)
 - Work not fully recognized until 1960s
- The evolution of temperature determines what happens
- In early Universe, temperature/energy was too high for electrons and nuclei to be bound as **atoms**
- In very early Universe, temperature/energy too high for protons and neutrons to remain bound as nuclei
- No direct observations to constrain theories

Lemaitre

Gamow

Matter-light conversion

- If photons have sufficient energy, they can create particle-antiparticle pairs
- Particles annihilate to create photons
- Thus, there is a temperature where photons can, on average, create a certain particle
- For example, protons with $m = 1.7 \times 10^{-24}$ g, $T_{\rm proton} \approx 10^{13} {\rm K}$

$$T_{\rm thresh} = \frac{2mc^2}{3k_{\rm B}}$$

Threshold temperature

- Above the threshold temperature, creation/destruction of particles and anti-particles in equilibrium
- Below threshold temperature, particles and antiparticles have annihilated
- Residual particles left over
- May still be in thermal equilibrium, but photons not energetic enough to create pairs any more

History of the Universe

"very early **Universe**"

Time

"early Universe"

Logarithmic time scales: Chernobyl

Images from Wikipedia / HBO show

Part 3: The very early Universe

Standard model of elementary particles

Participation: Fundamental Forces

TurningPoint: Which is not a fundamental force?

Session ID: diemer

Fundamental forces

Force	<image/> <section-header></section-header>	<image/> <section-header></section-header>	<image/>	<image/>
Strength	1	$\approx 10^{-2}$	$\approx 10^{-6}$	$\approx 10^{-38}$
Mediator particle	gluon	photon	W/Z bosons	graviton?
Examples	 Binds quarks into protons, neutrons etc Holds nuclei together 	 Electric and magnetic fields Light 	• Neutron decay	 Gravity Graviton has not yet been detected <u>emedicalprep.com</u>

Electrostatic force vs. gravity

$$\frac{F_{\rm e}}{F_{\rm g}} = 4 \times 10^{42}$$

- Gravity is attracting two electrons (with mass $m_{\rm e}$)
- Electrostatic force is repelling them (with charge q_e)
- Both fall of as 1/r² with distance
- The electrostatic force is much, much stronger!

Grand Unification

universe-review.ca

Four fundamental forces

- In very early Universe, all forces were of roughly equal strength, or "unified"
- As universe cooled down, they started to "decouple" from each other

The Planck Epoch

- Big Bang happens at t = 0
- The Planck Epoch (t < 10-43s)

- All fundamental forces are **unified**, including gravity
- We have **no working theory** for the physics during this epoch (quantum gravity)
- End of the Planck Epoch (t = 10⁻⁴³s)
 - **Gravity decouples** from other forces, General Relativity starts to describe gravity
 - Gravitons cease their interactions with other particles and start freely moving through space
 - A background of gravitational waves is produced (but almost completely redshifted away by the present day)

The Unified Epoch

- Lasts from $t = 10^{-43}$ s to 10^{-35} s
- Two forces operate:
 - Gravity (described by GR)
 - All other forces (described by GUTs): Strong, Weak, Electromagnetic
- During unified epoch (~10⁻³⁷s), Universe is believed to have undergone a period of exponential expansion called "inflation"
 - Size of universe expanded by factor 10¹⁰⁰ to 10¹⁰⁰⁰
 - Will discuss inflation later in the course
- At end of epoch, GUT force splits into Strong and Electroweak force

The Electroweak Epoch

- Lasts from $t = 10^{-35}$ s to 10^{-12} s
- Three forces operate:
 - Gravity (described by GR)
 - Strong (nuclear) force
 - Electroweak force
- Ends when weak and electromagnetic force separate
- At end of "very early Universe", we have arrived at "normal" physics
- Still, the temperature is so high that there are no atoms or even nuclei

Part 4: The (slightly less) early Universe

Standard model of elementary particles

Particles

- Particles created/annihilated in the very early Universe were more than the ordinary types of particles abundant today (protons, neutrons, electrons, photons, neutrinos)
- More exotic particles are observed today only as products of collisions in high-energy accelerators
- Two types of particles: fermions and bosons
 - Primary duty of **fermions** is to make up **matter**
 - Primary duty of **bosons** is to mediate **forces**
- Fermions include:
 - Particles made from quarks, called hadrons
 - Baryons are made of 3 quarks (e.g. proton, neutron)
 - Mesons are made of 2 quarks (e.g. pion)
 - Particles not made from quarks, called leptons
 - Electrons, muons, tauons
 - Neutrinos
- Hadrons are generally more massive than leptons

Quark Epoch

- Lasts from 10⁻¹² s to 10⁻⁶ s
- Universe consists of soup of
 - Quarks
 - Gluons
 - W/Z bosons
 - Photons
 - Leptons
 - More exotic particles
- Quark epoch ends when **quarks** pull themselves together into hadrons (mesons and baryons)
- Baryogenesis
 - Slight asymmetry between particles & antiparticles
 - Get more matter than antimatter by 1 part in a billion
 - This produces all the matter we have today!

Big Bang	Quarks Muons Taus Age of quarks Gluons Photons	Quarks Protons Muons Neutrons Age of nucleons Taus Electrons Mesons Photons	Protons He Age of nucleo- synthesis He Electrons Photons
	10 12		
Time 0	10^{-12} s	10 ⁻⁰ s	15 s
$T(K) \infty$	10 ¹⁵	10 ¹³ 5	$\times 10^{9}$

Matter-antimatter asymmetry

Take-aways

- Radiation was the dominant component for most of the evolution of the early Universe
- Radiation and matter were in thermal equilibrium, where particles can be freely created and destroyed if the temperature is above the threshold for their mass
- The four fundamental forces (strong, electromagnetic, weak, gravity) were initially unified and then separated

Next time...

We'll talk about:

How the elements were created

Assignments

Post-lecture quiz (by tomorrow night)

Reading:

• H&H Chapter 12