#### **ASTR 340: Origin of the Universe**

Prof. Benedikt Diemer

Lecture 26 • Our place in the Universe and the anthropic principle

12/7/2021

#### Logistics

- Course evaluations are now open
  - Until 12/14
  - <u>https://www.courseevalum.umd.edu</u>

### **Final Logistics**

- If you miss the final for a documented emergency, please let me know as soon as possible
- You need a doctor's note for medical absences
- Please make sure you are on time
- Bring a calculator

# Today

- Life and the anthropic principle
- Fine-tuning the Universe
- Possible solutions to fine-tuning



#### Part 1: Life and the anthropic principle

## The anthropic principle

Given our existence as observers, the physical laws and constants underlying the Universe must be such that they allow for life to form.

- Alternative version: Our location in the Universe is privileged as it must be compatible with our existence as observers (a counterpoint to the Copernican principle)
- Our existence tells us very little about the rest of the Universe or other Universes; if we did not exist, we would not be able to make this observation!

## The big question

- Our theories leave a lot to be explained
  - Why are physical laws the way they are?
  - Free parameters in standard model of particles (masses, forces etc)
  - Free parameters in cosmology (how much matter, dark energy etc)
- This raises uncomfortable questions for physics and cosmology:
  - Do our theories naturally predict Universes that can create life?
  - What happens when we change the free parameters?
  - More technically: out of the set of all possible physics, is the subset that would permit life to develop large or small?
  - More succinctly:

#### Is the Universe fine-tuned to allow for our existence?

# **Conditions for human life on our Earth**

- A **star** with just the right mass
  - two times larger and its lifetime would be too short (took ~3 billion years for human life to develop)
  - two times smaller: to have liquid water, Earth would need to be so close to star that rotation would be tidally locked (hot day side, cold night side)
- A planet...
  - with the right mass and composition
  - in the "habitable zone" around its star
- Large Moon
  - keeps tilt of Earth's axis relatively steady; otherwise widely varying seasons
- A benevolent **Jupiter** 
  - shields us from many impacts (extinctions)
  - bad Jupiters (large gas planets) drive interior planets into star
- Right place in **Galaxy** 
  - close to the nucleus, too many supernova and gamma-ray bursts
  - in halo and globular clusters, few heavy elements
- And so on...



# **Coincidence?**

- Can all of this be a coincidence?
  - Yes!!!
- There are **10**<sup>10</sup> stars in the Milky Way alone, and most have planets
- There are **galaxies** wherever we look
- The question becomes irrelevant if we consider an **infinite Universe**





# But what about life?

- We can ask many more detailed questions:
  - Which **planets** can host life?
  - What **elements** to we need exactly (C, O, N...)?
  - What does it take to make **DNA**?
- These are not the questions we are asking!
  - We assume that life can emerge if some **fundamental conditions** are given
  - Miller-Urey experiment showed that organic compounds are formed under generic conditions



Miller-Urey experiment



### Conditions for (any kind of) life in the Universe

- Matter that can create numerous, stable connections
  - i.e., atoms and chemistry
- Fundamental forces that facilitate the necessary processes
- Energy (from stars)
- Planets or other dense, solid structures
  - Gas is transient in its structure; life cannot emerge in stars or gas planets
  - Compact objects (white dwarfs, neutron stars) allow no chemistry
- Time
  - Human life took 3 billion years to develop; a Universe that recollapses after a short time probably won't do
  - Stable environment for prolonged period of time



#### Part 2: Fine-tuning the Universe

# **Fundamental particles**

- At least 18 free parameters in the standard model that could be different
- Some of these parameters are the particle masses, e.g.,  $m_{up} = 4.5m_e$  and  $m_{down} = 9.4m_e$
- Proton is stable because lightest baryon (threequark particle)
- Make down-quark 70+ times heavier:
  - decays into up-quarks
  - only  $\Delta^{++}$  baryons
  - only one element ( $\Delta^{++}$  + 2 electrons, like  $\Delta^{++}$ -Helium), with no chemical reactions
- Make up-quark 130+ times heavier:
  - decays into down-quarks
  - only  $\Delta^-$  baryons
  - one atom ( $\Delta^-$ -hydrogen) and one molecule ( $\Delta^-$ - $\Delta^-$  molecular hydrogen)



Lewin & Barnes, A fortunate Universe

### **Fundamental particles**

- What about less dramatic changes?
- Make down-quark heavier by a factor of 3:
  - all neutrons decay into protons, even in nuclei
  - only hydrogen atoms
- Make up-quark heavier by factor of 6:
  - protons decay into neutrons
  - no atoms at all, only neutrons
- Make electron heavier by factor of 2.5:
  - again, only neutrons
- And so on...



#### **Fundamental particles**



#### **Fundamental forces**

| Force                | <image/> <section-header></section-header>                                                     | <image/> <section-header></section-header>                          | <image/>          | <image/>                                                                                                     |
|----------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------|
| Strength             | 1                                                                                              | $\approx 10^{-2}$                                                   | $\approx 10^{-6}$ | $\approx 10^{-38}$                                                                                           |
| Mediator<br>particle | gluon                                                                                          | photon                                                              | W/Z bosons        | graviton?                                                                                                    |
| Examples             | <ul> <li>Binds quarks into<br/>protons, neutrons etc</li> <li>Holds nuclei together</li> </ul> | <ul> <li>Electric and<br/>magnetic fields</li> <li>Light</li> </ul> | • Neutron decay   | <ul> <li>Gravity</li> <li>Graviton has not yet<br/>been detected</li> <li><u>emedicalprep.com</u></li> </ul> |

# **Fundamental forces**

- Strength given by "coupling constants"
- E&M is responsible for **chemical** reactions, strong & weak forces for **nuclear** reactions
- Strong force is about 20,000 times stronger than electromagnetic
- Thus, chemical reactions consume / produce way less energy than nuclear reactions
  - e.g., a fire can chemically burn C to CO<sub>2</sub> but not convert one element into another
- Imagine making E&M much stronger:
  - Elements would change all the time!
  - Overbaking your cake could turn carbon into iron...
  - This universe could still allow life, but it seems chaotic
- Make strong force twice stronger:
  - Helium forms at higher temperature (earlier) in the Universe
  - More neutrons (because they have not decayed yet)
  - 90% of hydrogen "burns" to Helium! Less fuel for stars



**Proton count** 



Lewin & Barnes, A fortunate Universe

#### **Fundamental forces**



# **Making Stars**



Radiation pressure balances gravitational forces

- Balance between **gravity** and pressure from **nuclear** burning
- Gravity is about 10<sup>40</sup> times weaker than strong force
- Make gravity weaker
  - Uniform "soup" universe: no structure, no stars, no life
- Make gravity much stronger (say only 10<sup>30</sup> times weaker than strong force)
  - Stars have to burn faster and hotter to resist gravitational collapse (like large, blue stars)
  - They use their fuel quickly and die off soon



#### **Making Stars**



Strength of electromagnetism

#### Interlude: Murkiest points

#### **Participation: Discussion #26**



#### Murkiest point

Are there any questions that you feel confused about, and that you would like me to discuss during the review lecture?



# Cosmology

- The strength of CMB fluctuations (about 10-5) is not fundamentally predicted by inflation or early Universe theory
- If fluctuations are **too strong** (greater than 10<sup>-4</sup> or so), halos collapse into massive **black holes!**
- If fluctuations are **too weak** (smaller than 10<sup>-6</sup> or so), we cannot form dense galaxies that make stars



Matter-photon ratio

#### **Cosmological Constant**

- We have no fundamental prediction for the strength of the cosmological constant,  $\Omega_{\Lambda}$ 
  - If assuming that it is vacuum energy, can predict it from sum of vacuum energies of all particle fields (electron, quarks, neutrinos...)
  - That is **10<sup>120</sup> too large!**
- Making cosmological constant larger -> universe expands exponentially -> no structure -> no life
- No cosmological constant ( $\Omega_{\Lambda}$  = 0) would be OK



**Cosmological Constant** 

# **Dimensionality of the Universe**

- Our Universe has 3+1 space and time dimensions
- What happens if we had **extra dimensions?**
- 2 space dimensions
  - No gravitational fields in empty space
- 4 space dimensions
  - Gravity and electrostatic force scale as 1/r<sup>3</sup> instead of 1/r<sup>2</sup>
  - No stable orbits! Earth would fall into Sun
  - Electrons would fall into nuclei -> no atoms!
- 2 time dimensions
  - Physics follows laws, but they would be very hard to predict because we'd need to know the state of a system over a large range of the "other" time dimension!
- Compactified dimensions from String Theory could be a way out of this conundrum



#### Part 3: Possible solutions to fine-tuning

### **Solution 1: Coincidence**

- Unlikely outcomes sometimes happen so what?
- Basically equivalent to saying "I don't care about fine-tuning"
- Not really a solution
- Depends on your attitude



### **Solution 2: Divine creation**

- Fine-tuning can be used as an argument against physics and for creationism
- Two quite different flavors
  - An **omnipotent entity** is managing everything (which arguably makes the explanation more complex than the question)
  - An entity **designed** the laws of the Universe so that they allowed for life
- Variant of creationism: we live in a computer simulation like The Matrix
  - Could look for glitches or rounding errors



# **Solution 3: Multiverses**

- A super-universe spawns a large (infinite?) number of **sub-universes with different physics and/or constants** 
  - For example, due to inflation happening in different patches of the super-universe
  - Fine-tuning is explained by the anthropic principle: we can only observe our Universe because it provided for our existence
- Problem #1: we probably can never see the other sub-universes, making it hard to understand the underlying physical laws
- Problem #2: we do not know how to quantify how likely a given Universe is, and how to compare that probability to all others ("measure problem")

## Solution 4: Find more fundamental theory

- Fine **theory of everything** (TOE) which would ideally have **no fine-tuned parameters**
- This is the big goal!
- We cannot say with certainty that it is possible to find such a theory, but we certainly shouldn't give up yet!
- The progress of fundamental physics theories will likely rely on **astrophysics** to deliver some of the key data



#### Take-aways

- Our existence means that our Universe must provide the conditions for life to form (the anthropic principle)
- The laws of physics appear to be **fine-tuned** in many ways to produce an interesting, life-supporting Universe
- Possible solutions to this conundrum include creationism, multiverses, and that we have not yet discovered the true, underlying theory of physics

#### Next time...

#### We'll talk about:

• Review of the course

#### Assignments

• Homework #6 (by 12/9)